Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease.
نویسندگان
چکیده
Transplantation of bone marrow cells as well as circulating endothelial progenitor cells (EPC) enhances neovascularization after ischemia. The chemokine receptor CXCR4 is essential for migration and homing of hematopoietic stem cells. Therefore, we investigated the role of CXCR4 and its downstream signaling cascade for the angiogenic capacity of cultured human EPC. Ex vivo, differentiated EPC derived from peripheral blood abundantly expressed CXCR4. Incubation of EPC from healthy volunteers with neutralizing antibodies against CXCR4 profoundly inhibited vascular endothelial growth factor- and stromal-derived factor-1-induced migration as well as EPC-induced angiogenesis in an ex vivo assay. Preincubation of transplanted EPC with CXCR4 antibody reduced EPC incorporation and impaired blood-flow recovery in ischemic hindlimbs of nude mice (57+/-4% of normal perfusion versus untreated EPC: 80+/-11%, P<0.001). Bone marrow mononuclear cells (BM-MNC) or EPC of heterozygous CXCR4(+/-) mice displayed reduced CXCR4 expression and disclosed impaired in vivo capacity to enhance recovery of ischemic blood flow in nude mice (blood flow 27+/-11% versus 66+/-25% using wild-type cells, P<0.01). Importantly, impaired blood flow in ischemic CXCR4(+/-) mice was rescued by injection of wild-type BM-MNC. Next, we investigated the role of CXCR4 for functional capacities of EPC from patients with coronary artery disease (CAD). Surface expression of CXCR4 was similar in EPC from patients with CAD compared with healthy controls. However, basal Janus kinase (JAK)-2 phosphorylation was significantly reduced and less responsive to stromal-derived factor-1 in EPC from patients with CAD compared with healthy volunteers, indicating that CXCR4-mediated JAK-2 signaling is dysregulated in EPC from patients with CAD. The CXCR4 receptor signaling profoundly modulates the angiogenic activity and homing capacity of cultured human EPC. Disturbance of CXCR4 signaling, as demonstrated by reduced JAK-2 phosphorylation, may contribute to functional impairment of EPC from patients with CAD. Stimulating CXCR4 signaling might improve functional properties of EPC and may rescue impaired neovascularization capacity of EPC derived from patients with CAD.
منابع مشابه
Endothelial Progenitor Cells From Patients With Coronary Artery Disease Impaired CXCR4 Signaling Contributes to the Reduced Neovascularization Capacity of
Transplantation of bone marrow cells as well as circulating endothelial progenitor cells (EPC) enhances neovascularization after ischemia. The chemokine receptor CXCR4 is essential for migration and homing of hematopoietic stem cells. Therefore, we investigated the role of CXCR4 and its downstream signaling cascade for the angiogenic capacity of cultured human EPC. Ex vivo, differentiated EPC d...
متن کاملSphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor.
OBJECTIVE Sphingosine-1-phosphate (S1P) is a bioactive lipid, which influences migration and proliferation of endothelial cells through activation of S1P receptors and has been shown to support SDF-1 induced migration and bone marrow homing of CD34+ progenitors. METHODS AND RESULTS Here, we show that incubation of patient-derived endothelial progenitor cells (EPCs) with S1P or its synthetic a...
متن کاملReduced levels of putative endothelial progenitor and CXCR4+ cells in coronary artery disease: kinetics following percutaneous coronary intervention and association with clinical characteristics.
Levels of circulating endothelial progenitor cells (EPCs) and CXCR4-positive cells are decreased in patients with coronary artery disease (CAD); however, their ability to change in response to acute vascular injury remains to be elucidated. Progenitor and CXCR4-positive cells were analysed by flow cytometry from the peripheral blood of 23 healthy controls and 23 patients with CAD, of which 13 p...
متن کاملProfoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease.
BACKGROUND Cell therapy with bone marrow-derived stem/progenitor cells is a novel option for improving neovascularization and cardiac function in ischemic heart disease. Circulating endothelial progenitor cells in patients with coronary heart disease are impaired with respect to number and functional activity. However, whether this impairment also extends to bone marrow-derived mononuclear cell...
متن کاملAssociation between T-786C polymorphism of endothelial nitric oxide synthase gene and level of the vessel dilation factor in patients with coronary artery disease
Various polymorphisms on endothelial nitric oxide synthase (eNOs) gene cause reduced production of NO, the endothelial relaxing factor, and may accelerate the process of atherosclerosis. The study designed to investigate the frequency of T-786C polymorphism of the eNOs gene in patients suffering from coronary artery disease (CAD) in north-west of Iran. One hundred twenty subjects including 60 p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 97 11 شماره
صفحات -
تاریخ انتشار 2005